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Abs t rac t  

We analyse the ladder representations from an algebraic point of view. We find that 
these representations are closely connected to the representation of the left multiplication 
of the algebra of all polynomials U/J of the creation and annihilation operators. It turns 
out that the ladder representations appear as a projection of the left multiplications on 
a subspace of U/J. The algebraic approach allows us to extend the class of the ladder 
representations. 

1. Introduct ion 

The ladder representations of  a given Lie algebra A are usually obtained 
through realisation of the generators of  the algebra in terms of second- 
order polynomials of creation and annihilation operators t  b i , a i ( i , j =  
1 ..... p), with subsequent realisation of this operators in the space V of all 
polynomials of  the creation operators (Todorov, 1966). The representations 
of  al,bj  used in this case is the same as in quantum field theory: 

ai o b71 ' ' '  bT" " " b~p]0> = ni bT' " " bT~-l " " b~ ~ (1) 
b, o b ~ ' "  "bT""b~ , ]O> = b71''  "b7 '+1' '  "b~ 

where [0> is the vacuum state annihilated by a~, i.e. at[0> = 0. We shall 
refer to the representation (1) as the ladder representation of the creation 
and annihilation operators. 

In the present paper  we analyse the representations of the type (1) f rom 
a purely algebraic point of  view. We find that the ladder representations 
appear as a projection of the left multiplications of  the algebra U / J  of  all 
polynomials of  the canonical variables onto the subspace V c  U/J  spanned 
on all monomials  of  the creation operators. The algebraic approach allows 
us to enlarge the representation space V to the subspace V of the quotient 
division ring of the Heisenberg algebra generated by bl . . . .  ,bp. In this way 
we obtain also some new ladder-type representations. We do not treat 
any topological properties of  the representations, and only in an example 
do we show how one can introduce a metric in 17 in order to obtain some 
of the hermitian representations of  SU(1 ,1 ) .  The theorem stated below 

? These operators are also called Heisenberg algebra generators or canonical variables. 
93~ 
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shows why the representations of the Heisenberg algebra are important 
and what their connection is with the representations of the Lie algebras. 

Theorem (Doebner & Palev, 1970a) 
The elements of an arbitrary finite Lie algebra A may be realised as 

rational functions of creation and annihilation operators. In particular 
there always exists a realisation of A in terms of polynomials of arbitrary 
order in at and bj (i,j = 1 ... . .  p). 

Therefore, the bigger the class of representations of the canonical 
variables, the larger the class of representations of A can be constructed. 
For this purpose representations in which a~ is not the hermitian conjugate 
of b~ are also useful. 

In Section 2 we introduce the concept of a free algebra U of arbitrary 
entities al . . . .  ,ap over the field F and define G-representations of U. In 
Section 3 we use these representations in order to construct the ladder-type 
representations of the creation and annihilation operators. 

2. Definitions and Preliminary Results 

Let A = (al,.. . ,ap) be given entities and F be an arbitrary field. Denote 
by U(A) the free algebra generated by al , . . . ,ap over F, i.e. the set of all 
polynomials of the entities al . . . . .  ap over F. Let G = (gili ~ I) be a given 
linearly independent set of elements from U(A) labelled by the index set L 
By J(G) we denote the ideal in U(A) generated from G, and U(A)/J(G) 
is the factor algebra of U(A) modulo J(G). We call the elements gt, i ~ I 
structure relations of U(A)/Y(G). 

Let 0 be a mapping of the generators a~ of U(A) into a set ~ of linear 
transformations in some linear space L over F, i.e. 

0 :at ~ ~ = Oat (i = 1 , . . . , p )  (2) 

For an arbitrary h(al ....  , ap) ~ U(A) the mapping 

h(al,...,ap) -+ h(Oa~ ..... Oct,) (3) 

induces a homomorphism of U(A) into the algebra A of all linear trans- 
formations of L. 

Definition 
Let 0 be the homomorphism of U(A) into A defined above and let 

G=(gi[i~I)  be a given set of elements from U(A). We say that 0 is a 
G-representation (or representation of the elements from G) of the free 
algebra U(A) if G is contained in the kernel K o f  the homomorphism, i.e. if 

Ogi=gi(Oal,...,Oal, ) = 0  (iEI) (4) 

Zemma 
Let 0 be a G-representation of U(A) in L. Then 0 defines a representation 

of the factor algebra U(A)/J(G) in L. 
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Proof: We need only to show that 0 considered as a mapping of U(A)/J(K) 
into A is defined in the right way, that is if a, b ~ U(A) and a = b(mod J)  
then Oa = Oh. Since the kernel of  0 is an ideal, and G c K, we have J(G) c K. 
Suppose a = b(mod J). Then a - b = j  ~ J. 

O(a - b )  = O(j)  = 0 

Oa =- Ob. (5) 

The algebras U(A) and U(A)/J(G) are associative algebras. With respect 
to the composition [a,b] = ab - ba they are Lie algebras, and 0 is a Lie- 
homomorphism of U(A) and U(A)/J(G) into A. 

Corollary 
Let 9 be a Lie-homomorphism of the Lie algebra B in U(A)/J(G). To 

every G-representation of U(A) there corresponds a (Lie) representation 
0~o of B in L. 

3. Some Representations of  the Structure Relations 

In the present section we discuss some representations of arbitrary 
structure relations. We apply the results to the Heisenberg structure re- 
lations and show how they can be used in order to extend the class of the 
ladder representations (1). 

Let G = (gl,.. . ,gr) be the structure relations of the algebra U(A)/J(G). 
One natural G-representation of  U(A) can be constructed in the following 
way. Consider as representation space L the algebra U(A)/J(G). With 
every as we associate a linear transformation ~7~ = Oai of U(A)/J(G) as 
follows 

as. l = a~ l (6) 

where l ~ U(A)/J(G) and the multiplication between as and l is the one 
defined in U(A). The mapping O:at ~ ~ defines a representation of  
U(A). This is the so-called representation by left multiplications. 
For every h e  U(A) gi(al . . . . .  ap)h~J(G),  since g ~ J ( G ) .  Therefore, 
g~(al .... ,ap)h = 0(mod J), and we have 

g,(al . . . . .  ap) . U ( A)/J ( G) = 0 (7) 

i.e., 0 is G-representation of U(A) and hence it defines a representation 
of U(A)/J(G). 

The representation of U(A)/J(G) by left multiplications will help us 
to construct a class of new representations which in the case of the Heisen- 
berg algebra is larger than the ladder representations (1). Consider a pair 
(V, 9), where V is a subspace of U(A)/J(G) and 9 is a linear transformation 
defined in the image space 0 V with the following properties 

~o(0v)c v 
g~(q~Oax . . . .  , ~oOap) --- 0 (8) 
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The mapping ~b:ai --~ dl = 900. al associate with every generator at a linear 
transformation d~ in V. By construction ~b is a G-representation, To every 
pair (V,q~) there corresponds a G-representation of U ( A )  in V induced by  
the representation of the left multiplications. 

We now proceed to study in more detail the structure relations cor- 
responding to the Heisenberg algebra. Denote by H the set of 2p generators 
al . . . . .  ap, bl . . . . .  bp of the free algebra U ( H )  over the field F and let J ( G )  

be an ideal in U ( H )  generated by the following Set G of elements of U ( H )  

a ib j  - b ja i  - 18ij 

ai aj - aj  a~ (9) 
bl bj  - bj  bi 

where i , j  = 1 . . . .  ,p  and 1 is the unity of U ( H ) .  In the factor algebra U ( H ) /  
J ( G )  we have that 

[a~, b j] = 18~j (10) 
[a~, aj] = [bi, b j] = 0 

Thus the structure relations (9) lead to the commutation relations (10) 
for the Bose creation and annihilation operators. The subspace H c  U ( H ) /  
J ( G )  spanned on the operators a,, bj and ! is a Lie algebra with respect 
to the commutation relations (10), which is usually called a Heisenberg 
algebra. The associative algebra U ( H ) / J ( G )  consists of all polynomials 
of the creation and annihilation operators. It differs from the universal 
enveloping algebra of H, since the latter is given by all polynomials of 
a,, b~ and 1 (there, 1"r 1). In a previous paper (Doebner & Palev, 1970b) 
we have shown that U ( H ) / J ( G )  is a homomorphic image of the universal 
enveloping algebra. There we call it a quasi-enveloping algebra of H. 
The basis in U ( H ) / J ( G )  is given by all ordered monomials 

p p 

]-[ 67, .[~ aTJ (11) 
i=1 i l l  

Consider the quasi-enveloping algebra as a linear space over F. We 
obtain the representation 0 of the structure relations (9) as left multi- 
plications in U ( H ) / J ( G )  if we define the operators 5~ = Oai and b~ = 0b~ 
as follows: 
a i  o b~ 1 * . b~ i . np ml  . . . . . .  1 . . . .  i . . . . .  l . . . a 7  p _~ 

" "" bp al a p p - n ~ b l  bi b~r 

+ bT'""" b7 ~ . . . .  bp, aims"" a7,,+1 �9 "a~'~ (12) 
])~ 0 b~ 1. . .b ' l , .  b v a  I ..  "am ~'" "a~, = b7 i ' "  "h "'+~ . . . . .  1 

Define now a pair (V,~) in the following way. Let V be the subspace of 
U ( H ) / J ( G )  spanned on all monomials of the creation operators bi . . . . .  b v. 
Then OV is the space of all linear combinations of the elements b71.., b~r 
and bTz . . .b~pa ,  i = 1 . . . .  ,p. Let B~ be an arbitrary polynomial of b~, i = 

1,...,p. Define an operator q~(B~ . . . . .  Bp) in the subspace 0 V to be 
. . . . . .  ~ . . .b~ q~(B~ . . . .  ,Bp) o b 7' b~p - bl (13) 

. . . . .  , i . . .  b~B~ cp(Bl . . . . .  Bp) o b'~ ~ b~p a~ - bl 
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The operator 9(B1 . . . . .  Bp) satisfies the conditions (8), and therefore the 
mapping ~b:ai-+ d i =  ~Oat  and b j - - >  [~ = q~Ob~ defines a representation 
of the structure relations (9). Indeed, from the first of the relations (13) we 
have that ~ ( B ~  . . . .  , B p ) .  O V =  V .  The proof of equation (8) is straight- 
forward. I f  i = j  

( d i b j  - b~ d~) o bT'  " " b T ' "  " b~J. . . b~p = d~ o b'll . . . bTi .  . . b~J +1. . . b~p - 

- b j  o [n~b7 ~ . .  .b ' l  ,-~ . . . b ~ . . . b " p ,  + b7 ~ ' .  " b T " " b ' J J ' " b " p ~ B d  (14) 
= nt b7 ~" " "bi"~-1 . . . .  b j  + 1 . . .  b'~p + b T ' . . ,  bT"'"  ~jh"~ +l B~ - 

- -  n i  b'~ 1" " " h n l - l  " " " hn.j+l . . . bp + b7 ~ " " " bT' " " hnj+ l B i  = 0 
~ f  ~ j  - - j  

I f  i = j  we have 

(d~b~ - b~d i )  o b7 ~ ' '  " b ' l " "  "b"p, = d i o b'l ~ . .  .h,,+l.._i " b ~  - 
- -  ~ l  n p  n 1 b~ o [n~b7 ~ ' ' '  h " . ' - 1 ' ' "  b ,  + b l  " ' "  b ' l " ' "  b~, B d  

= (n~ + 1) b'l ~ . . .  b ' l " " b ~ p  + b ' l ~ ' " b ~ ) ~ + ~ ' " b " I  B~ - n ~ b T ' . . ,  b ' l " " b ~ ,  - 

- b'l ~ ' . "  b ' l ' + ~ ' " b " p ,  B~ = b7 ~ ' ' '  b T " " b ~ "  

Therefore, d~b_j_-bj_d~_= 13~j. In an analogous way one proves that 
d t d j  - d j d i  = bz b j  - b~b~ = O. Thus the G-representation of U ( H ) ,  which 
is also a representation of the quasi-enveloping algebra, is given by the 
relations 

�9 / I  - -  n 1 d~ o b"l ~ . . . b ' l "  " b~,~ - n~ b i  . ' .  b7 ,-~ . . . b~,  + b"~ ~ . . . b ' l "  " " b~,  B ,  (15) 
b~ o bT, . . . b'l~ . . . b~,  = h i ' . . ,  bT'+i . . . b'],, 

In the particular case when all B~ = 0, we obtain the ladder representation 
(1) of the creation and annihilation operators. 

The representations (15) are realised in the space V of all polynomials 
of the creation operators. In order to enlarge further the class of repre- 
sentations we proceed to enlarge the representation space. Let a ~ U ( H ) /  

J ( G ) .  Consider the equation 
a . x  = 1 (16) 

Equation (16) has no solution in U ( H ) / J ( G )  for any a, i.e. the quasi- 
enveloping algebra does not contain the inverse of any element different 
from 1. It has been proved, however, that the quasi-en'celoping algebra 
can be enlarged to a bigger algebra D in such a way that in D every non- 
zero element has an inverse; that is, U ( H ) / J ( G )  can be embedded in a 
division ring (Gel'fand & Kirrilov, 1965). In D all rational functions of 
the creation and annihilation operators are well defined. This allows us to 
enlarge the representation space V to the space 17 of all rational functions 
of the creation operators, and in particular to the subspace P =/7  generated 
by all elements 

bT' b~2 . . . b~p (17) 

where n~ = 0, • • :k3 . . . . .  i =  ,2,3, . . . ,p.  
The set of all monomials (17) is linearly independent, and therefore 

spans a basis in P. The representation of the Heisenberg algebra generators 
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in Pis defined by equation (15) also; however, now Bt is an arbitrary function 
of bt from the space P and nt are arbitrary positive or negative integers. 

It is worth pointing out that the ladder representation of the canonical 
variables in P cannot be extended to a representation of the hole division 
ring D in the same space. Indeed, suppose this is possible. Let: a --> d = Oa 
be a representation of D, and let a -1 be the inverse of at. Take the element 
b ~ = 1 ~ P. We have 

(O(a-f l) O(at)) o b ~ = O(a-f 1) o (O(at) o b ~ = O(aT. l) o 0 = 0 

O(aT 1 at) o b ~ = 0(1).b ~ = b~  

Hence, O(a -1 a~) # O(a:~ 1) O(at), and 0 does not preserve the multiplication. 
The representations (!5) of the canonical variables are infinite dimen- 

sional. Apart from some special cases as Bt = 0 (i = 1 . . . . .  p) it is not possible 
to define a scalar product in P such that bt will be hermitian conjugate of 
at. In spite of this it turns out that the representations (15) are useful for 
constructing hermitian representations of Lie algebras. This is interesting 
by itself, since usually the elements of the algebras are expressed as functions 
of at and its hermitian conjugate. 

To show that the extension of the representations space V to the space 
17 is relevant, we give an example using the algebra SU(1,1) .  

Example 
Consider the algebra SU(1, 1). The generators of it, H+, H_ and Ha, 

satisfy the commutation relations [strictly speaking, H§ H_ and H3 are 
elements from the complex extension of SU(1,1)] 

[H+, H3] = -H+,  

The mapping 

H+ -+ It+ = ibl a2, 

[H_, H3] = H_, [H+, H_] = --2//3 (18) 

H _  - +  B _  = ib2 al  

1-13 - +  t73 = �89 al  - -  b2 az)  (19) 

defines a Lie-homomorphism ofSU(1,1) in the algebra U(H) /J (G)  generated 
by two creation and two annihilation operators. Choose the representation 
space of the canonical variables in equation (15) with B1 = Bz = 0. Then, 
the space V of all polynomials of bl and bz resolves with respect to the 
realisation (19) of SU(1 ,1 )  into infinite direct sum of finite dimensional 
irreducible subspaces. Therefore, the space V carries no hermitian repre- 
sentations [SU(1,1) is non-compact]. Consider now the larger space P 
spanned on all monomials blmb2 ", with m, n being arbitrary positive or 
negative integers. A simple calculation shows that P resolves also into in- 
finite direct sum of irreducible subspaces ps  

P = e J  (20) 
j = l  
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Each space is infinite dimensional  and is spanned on the following vectors  

b-{2J-k b2 ~ (21) 
where k = 1 ,2 ,3 , . . .  

In t roduce  in every PJ  an o r thonorma l  basis 

e j  = o:j bl 2J-k b2 k (22) 
and demand  the condit ion 

ak J = / k +  1_ (23) 
~ + ,  ~] 2 j +  1 

+ + 
In  the metric  so introduced,  //3 = / / 3  and H+ = H_. Hence  every space 
PJ  carries a hermit ian  representat ion o f  SU(1,1). These representat ions are 
well known.  In  the Ba rgmann  notat ions  this is one of  the discrete series 
D ~+ (Bargmann,  1949). 
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